- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bhuyan, Laxmi (1)
-
Chen, Jieyang (1)
-
Chen, Zizhong (1)
-
Zamani, Hadi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The current trend of performance growth in HPC systems is accompanied by a massive increase in energy consumption. In this article, we introduce GreenMD, an energy-efficient framework for heterogeneous systems for LU factorization utilizing multi-GPUs. LU factorization is a crucial kernel from the MAGMA library, which is highly optimized. Our aim is to apply DVFS to this application by leveraging slacks intelligently on both CPUs and multiple GPUs. To predict the slack times, accurate performance models are developed separately for both CPUs and GPUs based on the algorithmic knowledge and manufacturer’s specifications. Since DVFS does not reduce static energy consumption, we also develop undervolting techniques for both CPUs and GPUs. Reducing voltage below threshold values may give rise to errors; hence, we extract the minimum safe voltages ( V safeMin ) for the CPUs and GPUs utilizing a low overhead profiling phase and apply them before execution. It is shown that GreenMD improves the CPU, GPU, and total energy about 59%, 21%, and 31%, respectively, while delivering similar performance to the state-of-the-art linear algebra MAGMA library.more » « less
An official website of the United States government
